3 research outputs found

    Permeability characterization of ferrites in the radio frequency range

    Get PDF
    Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2016, Tutor: Arturo Lousa RodríguezSoft ferrites are employed in applications from the kHz to the GHz frequency range due to its high magnetic saturation, low coercivity fields and high electrical resistivity. Measuring the complex magnetic permeability in the range from low frequencies to the radio frequency may be performed using two complementary techniques: impedance spectroscopy and coaxial transmission line. The procedures to extract the real dependence of the permeability from the experimental measurements are presented. The experimental permeability of three different ferrites are presented and modelled considering two sources of dispersion: the spin rotational magnetization and the domain wall motion. A good fit of the experimental results is obtained for ferrites that display only one dispersion mechanism after applying the required corrections of stray capacitance, Skin effect and electrical conductivity. For the ferrite showing the two magnetization processes, only a rough adjust has been achieved, although it is shown to be comparable to the ones reported in the recent scientific literatur

    Fetal Brain Tissue Annotation and Segmentation Challenge Results

    Full text link
    In-utero fetal MRI is emerging as an important tool in the diagnosis and analysis of the developing human brain. Automatic segmentation of the developing fetal brain is a vital step in the quantitative analysis of prenatal neurodevelopment both in the research and clinical context. However, manual segmentation of cerebral structures is time-consuming and prone to error and inter-observer variability. Therefore, we organized the Fetal Tissue Annotation (FeTA) Challenge in 2021 in order to encourage the development of automatic segmentation algorithms on an international level. The challenge utilized FeTA Dataset, an open dataset of fetal brain MRI reconstructions segmented into seven different tissues (external cerebrospinal fluid, grey matter, white matter, ventricles, cerebellum, brainstem, deep grey matter). 20 international teams participated in this challenge, submitting a total of 21 algorithms for evaluation. In this paper, we provide a detailed analysis of the results from both a technical and clinical perspective. All participants relied on deep learning methods, mainly U-Nets, with some variability present in the network architecture, optimization, and image pre- and post-processing. The majority of teams used existing medical imaging deep learning frameworks. The main differences between the submissions were the fine tuning done during training, and the specific pre- and post-processing steps performed. The challenge results showed that almost all submissions performed similarly. Four of the top five teams used ensemble learning methods. However, one team's algorithm performed significantly superior to the other submissions, and consisted of an asymmetrical U-Net network architecture. This paper provides a first of its kind benchmark for future automatic multi-tissue segmentation algorithms for the developing human brain in utero.Comment: Results from FeTA Challenge 2021, held at MICCAI; Manuscript submitte

    Computational pipeline for the generation and validation of patient-specific mechanical models of brain development

    No full text
    The human brain develops from a smooth cortical surface in early stages of fetal life to a convoluted one postnatally, creating an organized ensemble of folds. Abnormal folding patterns are linked to neurodevelopmental disorders. However, the complex multi-scale interactions involved in cortical folding are not fully known yet. Computational models of brain development have contributed to better understand the process of cortical folding, but still leave several questions unanswered. A major limitation of the existing models is that they have basically been applied to synthetic examples or simplified brain anatomies. However, the integration of patient-specific longitudinal imaging data is key for improving the realism of simulations. In this work we present a complete computational pipeline to build and validate patient-specific mechanical models of brain development. Starting from the processing of fetal brain magnetic resonance images (MRI), personalised finite-element 3D meshes were generated, in which biomechanical models were run to simulate brain development. Several metrics were then employed to compare simulation results with neonatal images from the same subjects, on a common reference space. We applied the computational pipeline to a cohort of 29 subjects where fetal and neonatal MRI were available, including controls and ventriculomegaly cases. The neonatal brain simulations had several sulcal patterns similar to the ones observed in neonatal MRI data. However, the pipeline also revealed some limitations of the evaluated mechanical model and the importance of including patient-specific cortical thickness as well as regional and anisotropic growth to obtain more realistic and personalised brain development models. Statement of Significance: Computational modelling has emerged as a powerful tool to study the complex process of brain development during gestation. However, most of the studies performed so far have been carried out in synthetic or two-dimensional geometries due to the difficulties involved in processing real fetal data. Moreover, as there is no correspondence between meshes, comparing them or assessing whether they are realistic or not is not a trivial task. In this work we present a complete computational pipeline to build and validate patient-specific mechanical models of brain development, mainly based on open-source tools
    corecore